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correlated with the general increase in solar activity, with the approach of
the expected solar cycle maximum around 1980.

The average latitudinal distribution of the nighttime scintillation activity
shows a pronounced enhancement at the point where the propagation path inter-
cepts the local L shell. The scintillation enhancement is more prominent in
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has contributed as well.

The latitudinal scintillation data have been sorted by magnetic activity.
There is a general monotonic increase in scintillation activity as one pro-
ceeds poleward from the region of the diffuse aurora. Both the occurrence

activity. The daytime data, however, show a more definitive latitudinal
boundary motion than do the nighttime data. Comparisons of premidnight and
postmidnight data show the premidnight activity to be somewhat more intense.

and severity of the scintillation data increases with increasing local magnetic
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I INTRODUCTION AND SUMMARY

The high-latitude ionospheric irregularity structure that manifests
itself ia a variety of scintillation effects has been studied for many
years. To define an equatorward boundary for the high-latitude scintil-
lation region, Aarons et al. (1969) used the point where the amplitude
scintillation index SI, measured at 54 MHz, first exceeds 50%. The global

trace of this point is referred to as the high-latitude scintillation 4

boundary. Poleward of the scintillation boundary, highly variable but

generally enhanced radio-wave scintillation occurs.

Aarons (1973) has summarized the high-latitude scintillation
morphology as deduced from a large and varied but consistently processed

database. The scintillation boundary has an oval form about the geo-

s T R o TR T TR T TR T

matnetic pole, as does the auroral oval which identifies the average
location of discrete auroral arcs. The scintillation boundary, however,
is generally displaced several degrees equatorward of the auroral oval

at night.

More recent observations have begun to show the detailed structure

TmYTT ST T aTTme et T

of the auroral-zone scintillation and its association with other auroral

| phenomena (Buchau et al., 1978; Martin and Aarons, 1977; Basu, 1975). |

In addition, the high-latitude irregularity structure has been sampled
in situ (Sagalyn et al., 1974; Phelps and Sagalyn, 1976; Ahmed and
. Sagalyn, 1978). These analyses show that the high-latitude magnetospheric

topology is consistent with the scintillation morphology in that the

nighttime irregularity boundary, which has been associated with the

equatorward edge of the soft central-plasma-sheet precipitation that
causes the diffuse aurora, coincides with the scintillation boundary.
Intense localized dayside scintillation has been associated with the cusp
region, Localized nighttime scintillation enhancements within the scin-
tillation boundary have been associated with active auroral arcs. This
list, however, is by no means exhaustive; moreover, the work of identify-

ing causal mechanisms has just begun.




In this report, we shall describe the morphology of the high-latitude
scintillation observations made at Poker Flat, Alaska, using the Defense
Nuclear Agency Wideband satellite., A detailed description of the experi-
ment can be found in Fremouw et al., 1978. The satellite was launched
on May 22, 1976, into a sun-synchronous polar orbit. Data were recorded
at Poker Flat, Alaska, on a regular schedule for two years. After the
two years of continuous operation, several intensive but comparatively

short data-gathering campaigns were conducted.

The station at Poker Flat, Alaska is located at 65°7'N latitude,
140°3'W longitude, at a dip latitude of 65.4°N. During moderately dis-
turbed auroral conditions, the midnight sector of the auroral oval passes
over Poker Flat. The station is thus ideally located for measuring scin-

tillation phenomena associated with the nighttime auroral oval.

The Wideband satellite orbit is such that southward-bound high-
clevation passes occur at Poker Flat approximately at local midnight
(1000 UT). Passes of progressively lower maximum-elevation angles occur
before midnight to the east and after midnight to the west. The passes
follow a trajectory nearly parallel to the gecomagnetic meridian plane
over Alaska., Figure 1 shows the 350-km ionospheric penetration paths
for high-elevation day and night passes against an outline of the state

or Alaska.

High-clevation daytime passes occur approximately nine hours after
the corresponding nighttime passes because of the orbital inclination.
They progress from the southeast to the northwest as shown in Figure 1.
Because of the operating schedule, however, = 307 f{ewer daytime passes
than nighttime passes were recorded. The database is described in

detail in Section II.

Before summarizing the principal results of the morphological study,
it is useful to describe the detailed structure of a few representative
individual passes. In Figure 2 we show a moderately disturbed evening
pass recorded on 28 May 1976 (the first pass recorded). The scintilla-
tion indices are shown, plotted against Universal Time (UT). The Briggs-

Parkin angle--the angle between the magnetic field direction and the
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FIGURE 1 IONOSPHERIC PENETRATION POINT AT 350 km FOR TYPICAL
HIGH-ELEVATION PASSES AT POKER FLAT

propagation vector--and the dip latitude at a 350-km reference altitude
are also shown. The minimum Briggs-Parkin angle is marked on all of the
displays. Because of the necar meridional trajectory of the nighttime
passes, this minimum occurs where the propagation vector lies within the
L-shell. In the nighttime data, scintillation enhancements are almost

certain to occur at this point,

A substorm onsct--as indicated by an abrupt development of a negative
bay on the College, Alaska, magnetometer--occurred during the pass. The

phasc-scintillation enhancement at 0954 UT is likely to be associated
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FIGURE 2 LATITUDINAL DISTRIBUTION OF AMPLITUDE AND PHASE SCINTILLATION
FOR MODERATELY DISTURBED PASS

with the westward traveling surge sencrated by the substorm (local mid-

night at College occurs at 1000 UT). The region of enhanced phase scin-

tillation between 0952 and 0955 is associated with a narrow region of
enhanced energetic particle precipitation, as indicated by the correspond-

ing total electron content data (not shown). The poleward scintillation

boundary present in this particular pass, however, is not a common feature

in the Poker Flat data.

A more typical pattern for moderately disturbed conditions is shown
in Figure 3. Here an intense, localized, phasc and amplitude scintilla-
tion enhancement is present well to the north of the station. The College
magnetometer shows a positive bay, indicating that the substorm activity
is well to the north of the station, although the poleward feature is
most likely substorm related. 1In the center of the pass there is a broad

region of enhanced phasc scintillation.
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FIGURE 3 LATITUDINAL DISTRIBUTION OF AMPLITUDE AND PHASE SCINTILLATION
SHOWING LOCALIZED PERTURBATION WELL TO THE NORTH OF POKER
FLAT
In Figure 4, we show the typical pattern for sustained low-to-
moderately-active conditions, when the substorm activity remains well to
the north of the station. We believe that the narrow enhancement at the
beginning of the pass is associated with the substorm activity. The most
conspicuous feature, however, is a narrow phase-and-amplitude scintilla-
tion enhancement just at the point where the Briggs-Parkin angle mini-
mizes. This feature has been attributed to a geometrical enhancement
caused by sheet-like irregularity structures (Rino et al., 1978). The
prominence of this scintillation feature was noted early in the Wideband

data analysis (Fremouw et al., 1978).

The nighttime data show a general two-component structure, One com-
ponent consists of narrow, highly variable scintillation enhancements
that are almost certainly associated with active discrete aurora. A
broader, more stable equatorward region of enhanced scintillation is

associated with the diffuse aurora. Within the diffuse aurora there is

—
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FIGURE 4 TYPICAL LATITUDINAL DISTRIBUTION OF AMPLITUDE AND PHASE

SCINTILLATION SHOWING LOCALIZED ENHANCEMENT WHERE THE
LINE-OF-SIGHT LIES WITHIN AN L-SHELL

a localized amplitude and phase scintillation enhancement that occurs

whenever the propagation path is coincident with an L-shell,

These findings are in agreement with the aircraft observations of
Buchau et al. (1978), who had good supporting optical data. They identi-
fied five regions, namely: the trough (I), diffuse aurora (III), and
polar cap (V), with regions IL and IV corresponding to the equatorward

and poleward boundaries of the diffuse aurora, respectively.

The geometrical enhancement is most pronounced when it occurs near
the edge of the diffusce aurora where a source region has been identified
1978).
(1978).

(Rino et al.,, This is evidently the Region-I1I1 enhancement observed

by Buchau et al. The poleward boundary (Region IV) is where
active ares are most likely to occur. It should be noted that quiet

auroral arcs produce enhanced phase scintillation but very little amplitude

10




scintillation (Buchau et al., 1978). The Poker Flat station is generally

too far south for polar cap observations,

Daytime (morning) scintillation generally shows much broader regions
of enhanced scintillation than do nighttime passes. Indeed, the most
intense¢ sustained-scintillation conditions occur during the daytime. An
example is shown in Figure 5, There is no evidence of sheet-like struc-
tures in the daytime data, although localized (but randomly located)

cenhancements do occur,

The results that follow are based on the first two yecars of Wideband
data collected at Poker Flat. The database and general data processing
are described in Section II. In Section III we cxamine the general oc-
currence of activity. Scintillation is not 1t all uniformly distributed
in the auroral zone., It was more frequent during the second year, in a
period of increasing solar activity. Also, while there were months that
were much more active than others, there is no evidence of seasonal con-
trol., By comparing general trends in scintillation activity and magnetic
activity, we will sce that, although the relationship is not simple,
there is a good correlation between the two, This holds true for both

night and daytiwme scintillation, which are quite different in nature.

Synoptic variations in scintillation are discussed in Section IV.
The latitudinal distribution of activity shows that the most distinct
feature in all ol the auroral Wideband data is a pronounced cnhancement
of scintillation necar the L shell, which is attributed to the formation
at night ot shecet-like irregularities. In some of the nighttime data,
there is also evidence for an anomalous enhancement of activity far to
the south,  The latitudinal distribution of night and daytime activity
is very difterent. A comparison of pre- and post-midnight passes shows,
however, only minor difterences.  The latitudinal distribution ot scin-
tillation activity, when orvanized by magnetic activity level, shows
vood ayreement between the occurrence of scintillation and the level ot

magnetic disturbance.

. o
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FIGURE 5 LATITUDINAL DISTRIBUTION OF AMPLITUDE AND PHASE SCINTILLATION
FOR DISTURBED DAYTIME PASS

Finally, in Section V, we compare the Wideband data with the pre-
dictions for intemsity scintillation at a given level of turbulence by
the phase-screen model of scintillation, in order to isolate the purely

geometrical factors,
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II DATABASE

Routine data processing includes, as a first step, filtering out
deterministic changes in the received signal, mainly power variations
caused by changing range and slow-phase trends. A 0.1-Hz cutoff fre-
quency is first used to remove the trend-like variations in the data.
The scintillation data are then characterized by moments computed over
20-s intervals. These include the measured rms phase, cd, and the in-
tensity scintillation index, S,» where §, = (<12> - (1)2)1/2/(I> and I
is the signal intensity. The S4 index ranges from zero, for an undis-
turbed signal, to an upper limit near unity under conditions of strong
scattering. System and sky noise place an effective lower limit on S4
of about 0.02, The rms phase varies from a noise-controlled lower limit
of about 0,1 rad to a virtually unlimited upper bound. The measured
value of the rms phase is, however, controlled by the detrend filter

cutoff, and no significance should be attached to its absolute value.

During the first two years of the experiment, the operating schedule
called for recording nighttime passes three times per week and daytime
passes once per week., As the Poker Flat station was the first remote
ficld site in operation, and is also unique in some other aspects, it
initially suffered a variety of cquipment problems. Some of these prob-
lems continued to degrade certain types of data for several months. As
a result, there exist some gaps in the data for the first year, and care-
ful editing was nccessary, with an eye toward retaining as large a sample
as possible. The net result, however, is an excellent database covering
the time from May 19706 until April 1978. 1In 1976-1977, a total of 284
complete or partial passes were retained, and 449 passes were collected
in 1977-1978, Changes in data-collection technique make for some dif-

ferences in the database over time, for example in the latitudinal

coverage, and these will be pointed out.




B

Typically, two or three satellite passes would be recorded during
each of the scheduled night and day operating times. Sometimes, more
intensive data-taking was scheduled for coordinated experiments near the
equinoxes. Passes of less than 30° maximum elevation were routinely
ignored, and generally the first and last 10° of elevation were masked

out to avoid multipath effects.




III OVERALL S4 AND c¢ STATISTICS

Figures 6 and 7 give a broad overview of the first two years of the
Wideband experiment. The passes were grouped into two bins per month,
in order to provide valid statistical samples, without obscuring short-
term variations. Figure 6 displays the data taken between May 1976 and
April 1977; Figure 7 is for the same period in 1977-1978. Each figure
gives separately a graph of S4 exceedence statistics, O exceedence
statistics, and an average of the three-hour K magnetic index as recorded

at nearby College, Alaska.

Exceedence statistics are derived as follows: Five levels of S4
and o@ have been selected; S4 = 0.2, 0.4, 0.6, 0,8, and 1.0, and 0 =
1, 2, 3, 4, and 5. The ordinate which is labeled Percent Occurrence
indicates the percentage of the observation time that the ordinate value
was e¢xceeded. For instance, in the first half of June 1976, the 0.2
value of S, was exceceded about 35% of the time, the 0.4 value about 97%
of the time, and the c:‘5 value of 1 was found to be exceeded about 207 of
the obscrvation time. <‘The numbers at the top of cach bin indicate the
numbers of passes and the number of 20-s data samples that form that

particular measurcment.

Between the plots marked Average College K and the o, histograms,
the number of passes contained in each bin and the total ;umber of 20-s
data points are indicated. For the sake of completeness, all of the
edited data has been displayed, and so care should be taken in interpret-
ing the activity of bins containing relatively little data. For example,
only two passcs were saved from the first half of October 1976, but the

bin has the highest percent occurrence levels of scintillation for the

first yecar.

The graphs at the tops of Figures 6 and 7 give some indication of

the magnetic activity for these yecars. The three-hour College K magnetic

15
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index was recorded for each pass, and these values were averaged weekly.
No striking patterns of activity are obvious in these displays, but
there are more subtle patterns evident. The activity does not follow a
point-by-point correlation with the magnetic disturbance, for instance,
but there is overall agreement. As an example, in the summer months of
1976, scintillation occurred with greater frequency in the later half of
each month, and this matches peaks in magnetic activity very well. Dur-
ing the winter months, however, there are two sharp peaks in the average
College K index for which there is no attendant rise in scintillation.
Nonetheless, the overall trend in magnetic activity during this period

is downward, which matches the decline in frequency of scintillation.

Although a peak in the average local magnetic activity is most often
associated with an enhancement of scintillation, the intensity of the
magnetic disturbance need not cause a proportionate increase in the
scintillation activity. Again, in the summer months of 1976, the greatest
magnetic activity occurred during satellite passes recorded in late
August. There is an increase in the scintillation activity during this
period, but it is lower than previous peaks in June and July when mag-
netic disturbances were lower. Similar patterns are evident in the 1977-

1978 data summarized in Figure 7.

It is apparent from these figures that phase and amplitude scintil-
lation track very well in this type of averaging. It is, therefore only
necessary, when comparing different data populations, to usec either one
or the other. In Figures 8 and 9 the GO values for night and daytime
passes for each year are compared. It is clear that the second year was
much more active than the first., This is seen clearly in the total ex-
ceedance levels for each year. For night passes (Figure 8) in 1976-1977,
the l-radian level was exceceded only 217 of the time, while the same
level eas exceeded 39% in 1977-1978. Scintillation was not only more
frequent but also more intensc; as an example, the 5-radian level of T,
was exceeded more the second year than was the 3-radian level during tﬁe

first year.




o1 f

= 0¢

-+ 0

- 0%

-+ 09

o g N o e e T Sy
ATINO VYiva 3IWILLHOIN 404 S713A3T 3ONVA3IIOX3 3ISVYHd 8 3IHN9I4
RIS HOHVYIN AHYNHE 34 AHVNNYT | 438W303Q H3IBWIAON 4380120 d438W3I1d3S 1SnHNy Alnr INAOr AVA
[t ¢ e I - S R e e i
] A CERsdeR b e
- s—1 ¢ g 4 | ——t——t—_~ e
—¢ ——» — g —— z — — ¢ — —t—t
O B -z ]
= — Iy — —: —4—c—— %] |
— ¢ — N | —t
£ z— 1 L,
IMI
— — ]
] . !
b 7 — ]
INI ! — i "N'I
-z — _— —, —— b —J
—z —
. e
—7z—
I—I
—— — | —d
]
L 86l L161
L1 - . o . . . o m
by - 3 ~ & 3 2 bt = N 4 & v 3 & B3 = & = © N <
P g N @ a 2 g w w ~ @ 2 = 2 & ¥ & w & Py @
© 3 M & @ & 3 g = © ) 2 B & c = g
i { s e
=TSy = t=7 rere—Er=T - .
§ z [3 z > \ Z T s Z 7 =
. 4 ¢ ¢ —
_ ! 1 | ] — 2~
| | | . £ —
INI
]
! 1261 9261
s & ¢ & 2 - 3 I T &8 & &5 z No°T 5 & & 5 7 = =
] Y & S = b S & 3 z ® « © & g 8 = 8 S & s
@ & & « & m 8 < © M 2 2 g K
IWILIHOIN LV14 H3INOd
S13IA3T IONVA3IIOXT

IDNIHMADDD INIDH I

[V ETRI AR IR VR M I )

19




HOYVYIN

ATINO Viva INILAVA HO4 S13A3T IJONV(A3I3IX3 ISVHI

AdVNHE33

439W3IA0N 4380100

— ¢ —

b— ¢ —t— r—

l— ¢ —

— ¢ —

L

— ]

l— ¢ —

}l— 7 —

—

— ¢ —

— 2 —

m =+ ¢ —1

- Eﬂm

1SNony

6 34NOI4

AN

INGT

[TTIF] ™

IWILAVA LVT14 HINOd
o

ST3IA3T 3IONVQA33IX3 »

8¢61
- w - - - - - -
= L % = = & ° ¥ 3 & 3 8 3 3 g = 7 8
5 % 2 ¢ 8 & B % Z & 3 g &8 5 ° & 2
[A] « ~ © o ~ a N
t L + t 3 |
[3 ! k4 [— ¢ A S T 1
Illmv €
—
- : —
| A‘
t
—
L —J
L6t 961
—— — JE— |
N & N} a =} ~ =} - =) w o - w w - ~ o
~ - ~ - o N (=4 « =) @ = = © ~ - e -
o @ ~ w (=] ] = S
S =3 © N b3 ~ < ~ = N

TINIHHNDOO INIDH I

JONIHHNIDO INIOH Id

20

+ N,

A

L

o

hi




There is no pronounced seasonal variation in the exceedence statis-
tics. The scintillation during 1976-1977 is most frequent in a broad
period around summer solstice. This is not the case in 1977-1978, when
the most active periods occurred near the spring equinox. There is
nothing in the winter of 1977 like the broad intense occurrence of

scintillation in the winter of 1978.

The daytime exceedence levels are shown in Figure 9., As discussed
in the introduction, daytime scintillation is evidently caused by dif-
ferent mechanisms than nighttime scintillation. The daytime scintilla-
tion of 1977-1978, however, is grouped in the same general periods as
the night activity, and is evidently correlated in a similar fashion with
magnetic disturbances. Unfortunately, the daytime results of 1976-1977

contain very few passes.

21
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IV SPATIAL AND TEMPORAL MORPHOLOGY

A, Latitudinal Distribution

To examine the latitudinal structure of the auroral-zone scintilla-

tion, S4 and o statistics were grouped into bins of magnetic dip lati-

3

(S

tude 2.5° wide. The level of activity, which was exceceded by half of
the data points, was then determined for each bin, This method was used,
rather than a simple average, in searching for scintillation sources,
because the method minimizes contributions from a few very quiet or very

disturbed passes.

Figures 10 and 11 show the latitudinal distribution of the nighttime
phase and intensity scintillation respectively., The number of 20-s data
points in cach bin of the histogram is included bencath the curve. The
increased activity during 1977-1978 is clearly evident in the phasc data.
The most striking result, however, is the region of enhanced activity
near 064° dip latitude (L shell = 5.5). This enhancement is the most
characteristic feature of the Wideband data. It is believed that the
enhancement is a geometrical effect that occurs when the propagation
vector aligns itself with irregularities which are highly celongated, not
only along the local direction of the magnetic field but also in the
planc of the local L-shell (Rino et al., 1978). The geometrical enhance-
Lent is more pronounced in phase scintillation (Figure 10) than it is in
the scintillation intensity (Figure 11), which is in agreement with the

weak scatter theory (Rino, 1979),

The distribution of activity in these figures is asymmetric about
the zenith., The strength and frequency of scintillation both grow
steadily to the aorth of the station. Behavior to the south is generally
more quiet, except for an anomalous increase in activity at the very

southern limits of the data in the first year, particularly in the in-

tensity scintillation (Figure 1l1). The sccond year does not show such
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NIGHTTIME DATA

2 ® 0

an increasc, but the latitudinal extent of this data is less than in the ]

first year. The difference in latitudinal coverage of the data betwecen
the two yecars resulted from a change in the elevation limits for ecach
pass, and also from a change in the detrending process which required a

longer filter settling time.

The relatively [ew data points contributing to the southern enhance-

ment, plus the fact that these data are almost all from the initial months

of operation when ground cffects were a recurring problem, make thesc
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data somewhat suspect. Even though ground effects have been carefully
edited from the database, they may occasionally be hidden in more mode-

rate activity., It appears, nonetheless, that the source is genuine,

In striking contrast to the latitudinal distribution of the night-
time scintillarion is the smooth pattern of daytime activity (Figurce 12),
The strength and frequency of the intensity scintillation of the second
year increases with dip latitude, and there is no evidence of the sheet-
like irregularities. The sheect-like irregularities have been associated
with the major nighttime particle-precipitation regions which are not

present during the day.

B. Pre-Midnight and Post-Midnight Variations
of Scintillation Activity

In Figures 13 and 14 the S4 50%-exccedence levels of nighttime data

arce divided into passes occurring before and after midnight. For the
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FIGURE 12 S4 AT 50% EXCEEDANCE LEVEL vs. MAGNETIC LATITUDE FOR DAYTIME
DATA

first year the pre-midnight data is somewhat higher than the post-

midnight; moreover, the poleward enhancement is more gradual in the
post-midnight data, suggesting that the auroral activity tends to be
closer to the station and/or more cvenly distributed. This type of
activity would be expected, based on the differences in structure between

the evening and the morning visual auroral patterns.

The pre-midnight data of the sccond year (Figure 14) show a widening
of the region of the geometrical enhancement when compared with the 1976~
1977 pattern of the post-midnight data. As conditions were generally
more active during the second year, this behavior is indicative of more
substorm activity near the station. The pattern of generally higher

scintillation activity persists in the 1977-1978 data,
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C. Seasonal Variation of Latitudinal Structure

The histograms of nighttime intensity scintillation for ecach year

are divided
(Figures 15
we found no

is verified

onc secason to the next, there is no correlation between the same seasons

into scasons centered arvound the solstices and equinoxes
and 16), In discussing the overall results in Section ITI,
correlation of activity with the seasons. This conclusion

by these figures, While activity varies considerably from

of the two years. The period February through April, for example, was

the most active time of the second year (Figure 16), while the same

period was the most quict time of the first ycear.
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fa

The local K index

i ordering the data

—

The K values
7 was included in

S, and ¢ for the
4 )

R |

D. Scintillation and Magnetic-Activity Dependence
of Latitudinal Structure k
L
To explore the relationship of scintillation to magnetic activity, b
histograms of the occurrence frequency for S, exceeding 0.3, and © 4

exceeding 1.0 radian (approximately the transition from weak-to-strong

H scatter regimes) were sorted according to the College three-hour K index.

in 5° of dip latitude is shown (bins arc again 2.5° wide).

A

was used; it was generally a better reference for

than the planctary index.

varied mostly from O to 7; the rarec valuec greater than
that grouping. Figures 17 and 18 display nighttime

first ycar., The number of 20-s data points included
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FIGURE 15 S4 AT 50% EXCEEDANCE LEVEL vs. MAGNETIC LATITUDE FOR 1976-1977

NIGHTTIME DATA FOR CONSECUTIVE 3-MONTH PERIODS

The latitudinal distribution of the nighttime scintillation data

shows evidence of both a gencral enhancement with increasing K as well

as equatorward migration,

data shown in Figures 19 and 20 where the southern enhancement is not

present.
the 1976-1977 data during less active (K = 1,2) conditions, which sup-

This is more clearly evident in the 1977-1978

It should be noted that the southern enhancement is present in

ports the hypothesis that it is associated with the plasma pausc.

lated with magnetic activity than in the nighttime data,
in the histograms of Figures 21 and 22 (sccond-year results).

quency of scintillation can be dramatic--e.g., when K 2 5, ©

The occurrence of strong daytime scintillation is more highly corre-

radian almost 100% of the time in the active region (Figure 22).

daytime data also show more evidence of boundary motion with varying

activity.
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V GEOMETRICAL FACTORS INFLUENCING SCINTILLATION MORPHOLOGY

To model the geometrical factors that influence the latitudinal
variation of scintillation activity, we have used the phasc-screen
theory developed in Rino and Matthews (1978) and Rino (1979). The

measured phase variance is given by the formula

2\ _ 2T 1-p
(8%) = 557 1, , (L

where fc is the detrend cutoff frequency (0.1 Hz), p is the power-law

index for the one-dimensional-phase spectral density, and

29 ,;'v 2v-1
T =1 A" (L sec 9) GCS 2v$& T(v) Vars . (2)
¢ (2:0) (v +1/2) ©

The three-dimensional irregularity spectral density function is

-(2vtl .
assumed to have the form qu v ), where v = p/2 and C 1is the "turbulent
3 S

' which is easily related to the structure constant commonly uscd

strength,’
in characterizing turbulent fluids and plasmas. The T parameter itself is
the turbulent strength for the one-dimensional temporal-phase power

spectrum, which has the form TP,

~

The angle & is the zenith angle and L sec © is the length of the
propagation path within the medium. The parameters r and A are the
e
classical clectron radius and signal wavelength respectively.  The main

goometrical factors are G and v . The former accounts for the "coherent"

eff
enhancement caused by the irregularity anisotropy. The "effvctive velocity"”
Vit accommodates the space-to-time conversion, allowing for the aspect
v
angle relative to the principal irvregularity axis,
The anisotropy is characterized by the axial ratio along the mag-

netic field (a), and transversce to the magnetic field (b). In genceral,

36

. »_na,f,’.‘#il!“»‘; 3 .Q‘l:’\"f ¢

s ol iR ot ' ) a— - . LN 1 b e o e NSl St N H O b

-l




the orientation angle of the second irregularity axis must be specified,
but we shall consider only the sheet-like structures aligned along the
iocal L shell--that is, transverse to the meridian plane. For a par-
ticular satellite pass, the anisotropy and height parameters are the
principal variables. Since we have assumed a single layer; however, the

LCS value must be regarded as an effective or average value.

The weak scatter formula for S4 corresponding to Eq. (1) is

2.5 = v
S2 = rzkz (L sec 8) C Z\)"l/2 r ( 2 ) o~
4 ¢ s —fv + 0.5 ° (3)
Z\/II T(——f—)(v - 0.5)
where

Az_ sec 8
=R

z= 43t ’ 4)

and J is the geometrical enhancement factor for intensity corresponding
to G. The parameter J, unlike G, depends on v and is generally more com-

plicated than G. In Eq. (4), Zg is the reduced range to the satellite.

Ideally, Egs. (2) and (3) should be applied to each individual pass
to determine the irregularity strength, which is independent of any
purely geometrical factors. This procedure was applied to a limited
number of data sets in Rino (1979). The scheme is not without pitfalls,
however, and it is very time consuming. We have thus taken advantage
of the similarity of the high-elevation passes and compared the summary

statistics to calculations based on single passes.

In Figurce 23 we show the amplitude and phase summary data for 1976-
1477 (sce Figures 11 and 12), together with model calculations for a
post=-niidnight pass. A constant CS level and a 100-km layer thickness
were used,  The CS level was adjusted to match the phase-scintillation
summary data at abproximately 60° dip latitude.

The phase-scintillation data fit the model very well through the

gyeometrical cnhancement to & 65° dip latitude. From that point poleward
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there is a steadily increasing departure of the data from the theoretical
curve based on a uniform perturbation level. We conclude that the

general latitudinal distribution of auroral-zone structure has a mono-
tonically increasing component beginning near the location of the midnight

auroral oval (= 65°) under moderately disturbed conditions.

The corresponding theoretical S4 curve overestimates the data from
~ 60° through the region of the geometrical enhancement, and then under-
estimates the poleward data--as do the phase-variance calculations.
Where the model overestimates the data, it is possibly because the
multiple~scatter effects are neglected. As multiple-scatter effects
are sensitive to anisotropy, saturation may well occur at lower turbu-

lence levels, for propagation angles that intercept a major irregularity

axis,

Alternatively, the discrepancy may indicate a contribtution due to a
source at higher altitudes. It can be seen from Eqs. (1) and (2) that
a given turbulence level produces more phase scintillation when it is

located at higher altitudes, becausc Ve increases rapidly with altitude.

ff
A fixed phase scintillation level, alternatively, corresponds to less

turbulence at high altitudes. In Eq. (3) the increase due to Z is over-
come by the decrease in Cs’ and S

4
height if o@ is held constant. This is discussed in Rino (1979).

actually decreases with increasing

This is an attractive possibility, becausc there is mounting evidence
that an F-region source often contributes to the purely geometrical en-
hancement caused by sheet-like irregularities. The evidence supporting
this is from simultaneous two-station obscrvations, and will be described

in a separate rcport.

To address the question of how the averaging affects the data in
Figure 24, we show the 1976-1977 data superimposed on model calculations
for a high-elevation pass. The fit is generally poorer, particularly
in the region of the geometrical enhancement. Since there are many more
lower-elevation passes in the databasce than higher-clevation passes,

this is not surprising. Idecally, one could weigh scveral geometries in
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proportion to the pass distribution for similar maximum elevation

angles, but this was not done.

The scintillation enhancement at = 50° dip latitude has been dis-
cussed, If it is genuine and not just multipath contamination, it must
be attributed to a subauroral source. Additional data have been re-
corded at Anchorage, Alaska, to study this feature, and we shall not

pursue it further here.

In Figure 25, the summary data for 1977-1978 are shown together
with model calculations of the average parameters. Here we see the
same general features as were found in the 1976-1977 data. To fit the
phase data at =~ 60° dip latitude, however, it was necessary to increase

log10 CS from 18.2 to 18.5, which is small but significant.

The major difference in the two data-sets lies in the magnitude and
rate of the increase, poleward, of 65°, The 1977-1978 data show a more
rapid increase that starts within the region of the geometrical enhance-
ment. This supports the hypothesis that a source region contributes to
the geometrical enhancement., It also shows than an average increasing
magnetic activity enhances the perturbation levels more than it moves

boundary regions. The two effects are, however, difficult to separate.
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